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1. Introduction

Let D be an unbounded domain in R2. We are interested in solutions to the minimal
surface equation for the boundary value problem

(1.1) Lu = div

(
∇u√

1 + |∇u|2

)
= 0

in D with

(1.2) u > 0 in D, u = 0 on ∂D.

We shall use complex notation z = x + iy for convenience. With M(r) being the
maximum value of u(z) on D ∩ {|z| = r}, we have previously studied upper bounds
on the growth rate of M(r) under various conditions [3], [9], [10]. We have also
obtained some information on the lower bounds.

In [3] we observed the general result

Theorem A. Suppose D is a domain with ∂D 6= ∅, and u as in (1.1) and (1.2).
Then u(z) has at least logarithmic growth.

From [10] we have

Theorem B. Let u satisfy (1.1) and (1.2) with D simply connected and contained
in a half plane. Then,

lim inf
r→∞

M(r)

r
> 0.

In this note we prove the following
1
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Theorem 1. Suppose that u(z) satisfies (1.1) and (1.2) with D simply connected.
Then

(1.3) lim inf
r→∞

logM(r)

log r
≥ 1/2.

The upper half catenoid [2, p.161] shows the necessity of simple connectivity in The-
orem 1.

We note that (1.3) with lim sup in place of lim inf follows from [8, Theorem 1]). Also,
(1.3) with 1/2 replaced by 1/π can be deduced from the work of Miklyukov [5, p.64].

The example given in [9, p. 1085] shows that (1.3) is sharp. (See also [3, p 3391] for
related examples.)

2. preliminaries

Let u be a solution to (1.1) and (1.2) over a simply connected domain D. We shall
make use of the parametrization of a surface given by u in isothermal coordinates
using Weierstrass functions (x(ζ), y(ζ), U(ζ)) with ζ in the right half plane H. Our
notation will then be given by

(2.1) f(ζ) = x(ζ) + iy(ζ) ζ = σ + iτ ∈ H.
Then f(ζ) is univalent and harmonic, and since D is simply connected it can be
written in the form

(2.2) f(ζ) = h(ζ) + g(ζ)

where h(ζ) and g(ζ) are analytic in H,

(2.3) |h′(ζ)| > |g′(ζ)|.

We dismiss the trivial case g′ ≡ 0 and may assume for later convenience that f(0) = 0.
Regarding the height function, we have (cf. [2, §10.2])

(2.4) U(ζ) = ± 2<e i
∫ √

h′(ζ)g′(ζ) dζ.

Now, z = f(ζ), u(f(ζ)) = U(ζ) and U(ζ) is harmonic and positive in H and vanishes
on ∂H. Thus, (cf. [7, p. 151]),

(2.5) U(ζ) = K <e ζ,
where K is a positive constant. This with (2.4) gives

g′(ζ) = − C

h′(ζ)
where C is a positive constant. By reparametrizing we may assume that

(2.6) U(ζ) = 2<e ζ and g′(ζ) = −1/h′(ζ),
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and then the analytic dilatation [2, p.6] a(ζ) satisfies

(2.7) a(ζ) = −1/h′(ζ)2.

Furthermore, from (2.3) we have, in particular, that

(2.8) |h′(ζ)| = 1/|g′(ζ)| > 1.

The strategy will be to analyze f(ζ) in sectors

Sε = {(−π + ε)/2 < arg ζ < (π − ε)/2},
where 0 < ε < π/2. We also define, for fixed ρ > 1,

(2.9) Sε,n = Sε ∩ {ρn ≤ |ζ| ≤ ρn+1} n = 0, 1, 2, ....

3. Quasiconformal mappings

We shall have occasion to view the harmonic mapping described in §2 as a quasi-
conformal mapping. A one to one sense preserving mapping f in a domain D is
quasiconformal, if its complex dilatation δ(ζ) defined by (cf.([2, p. 5]))

(3.1) δ(ζ) =
fζ(ζ)

fζ(ζ)
,

satisfies

(3.2) sup
ζ∈D
|δ(ζ)| < 1.

Henceforth, we shall refer to |δ(ζ)| simply as the dilatation.

The dilatation is a conformal invariant, and the inverse mapping has the same dilata-
tion at corresponding points [1, p. 9].

We shall need a modification of the Ahlfors distortion theorem which requires slight
changes in the standard proof [6, pp. 94-97].

In the classical setting we have a simply connected region G with accessible boundary
points Z1 = X1 + iY1 and Z2 = X2 + iY2 Z1 and Z2. We assume that −∞ ≤ X1 =
inf <e z for z ∈ G and ∞ ≥ X2 = sup<e z for z ∈ G. We consider z = x + iy in G
with cross cuts Θx separating Z1 and Z2 in G (See ([6, pp. 94-95]) for more details).
Let Θ(x) be the length of Θx. Let w(z) = µ(z) + iν(z) be a conformal mapping of G
onto the strip {|ν| < a/2} such that Z1 corresponds to −∞ and Z2 to +∞.

If µ1(x) denotes the smallest value on the cross cut and µ2(x) the largest, then the
classical distortion theorem is as follows.

Theorem C. If ∫ x2

x1

dx

Θ(x)
> 2,
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then

µ1(x2)− µ2(x1) ≥ a

∫ x2

x1

dx

Θ(x)
− 4a.

For our purposes, the strip Σε will be the (principal branch) logarithmic image of Sε
in the w = µ+ iν plane and G will be the image of a fixed branch of log f(Sε) in the
z = x+ iy plane with f as in §2. As previously mentioned, we assume for convenience
that f(0) = 0 so that in G, <e z extends from −∞ to +∞.

Let w(z) = log(f−1(ez)) for the principal branch of log which then has the same
dilatation as f at corresponding points.

Lemma 1. With the above notations, let R be a rectangle in the µ+ iν plane

R = Σε ∩ {α ≤ µ ≤ β} 0 < α < β,

and suppose that w(z) has dilatation less than δ0 in w−1(R). Then for x1 + iy1 and
x2 + iy2 in w−1(R) (x1 < x2) and a = π − ε, if

(3.3)

∫ x2

x1

dx

Θ(x)
> 2

1 + δ0

1− δ0

,

then

(3.4) µ1(x2)− µ2(x1) ≥ a
(1− δ0)

(1 + δ0)

∫ x2

x1

dx

Θ(x)
− 4a.

Proof. Our proof follows [6, pp 95-97].

The length of the arc Lx corresponding to w(Θx) is at least
√
a2 + ω(x)2, where

ω(x) = µ2(x)− µ1(x). Also,

Lx ≤
∫

Θx

(|wz|+ |wz|)dy ≤
∫

Θx

(|wz|(1 + δ0)dy ≤

√∫
Θx

dy

∫
Θx

|wz|2(1 + δ0)2dy.

Thus,

a2 + ω(x)2 ≤ Θ(x)

∫
Θx

|wz|2(1 + δ0)2dy.

Then,

a2

∫ x2

x1

dx

Θ(x)
+

∫ x2

x1

ω(x)2dx

Θ(x)
≤
∫ x2

x1

∫
Θx

|wz|2(1 + δ0)2dydx

= (1 + δ0)2

∫ x2

x1

∫
Θx

(|wz|2 − |wz|2 + |wz|2)dydx

≤ (1 + δ0)2

∫ x2

x1

∫
Θx

(|wz|2 − |wz|2 +
δ2

0|wz|2

(|wz|2 − |wz|2)
(|wz|2 − |wz|2)dydx

≤ (1 + δ0)2

∫ x2

x1

∫
Θx

(|wz|2 − |wz|2)(1 +
δ2

0

1− δ2
0

)dydx
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=
1 + δ0

1− δ0

∫ x2

x1

∫
Θx

(|wz|2 − |wz|2)dydx

≤ a
(1 + δ0)

(1− δ0)
(µ2(x2)− µ1(x1))

= a
(1 + δ0)

((1− δ0)
(µ1(x2)− µ2(x1) + ω(x2) + ω(x1)).

Summarizing this we have

(3.5) µ1(x2)− µ2(x1) ≥ 1− δ0

1 + δ0

(
a

∫ x2

x1

dx

Θ(x)
+

1

a

∫ x2

x1

ω(x)2

Θ(x)
dx

)
− ω(x1)− ω(x2).

For x0 ∈ (x1, x2), let

λ(x) =
1

a

(1− δ0)

(1 + δ0)

∫ x

x1

ω(t)2

Θ(t)
dt.

Let m > 0 be fixed and E be the set of x > x0 such that λ(x) < ω(x)−m. Then,

a
1 + δ0)

(1− δ0)
Θ((x)

dλ

dx
= ω(x)2 > (λ(x) +m)2,

so that ∫
E

dx

Θ(x)
≤ a

(1 + δ0)

(1− δ0)

∫
E

dλ

(λ+m)2
≤ a

m

(1 + δ0)

(1− δ0)
.

Similarly, if F is the set of x < x0 such that −λ(x) < ω(x)−m,∫
F

dx

Θ(x)
≤ a

m

(1 + δ0)

(1− δ0)
.

Choose x0 such that ∫ x0

x1

dx

Θ(x)
=

∫ x2

x0

dx

Θ(x)
=

1

2

∫ x2

x1

dx

Θ(x)
.

Then, if ∫ x2

x1

dx

Θ(x)
> 2

a

m

(1 + δ0)

(1− δ0)
,

we may take x′1, x
′
2 (x1 < x′1 < x′2 < x2) such that

(3.6)

∫ x′1

x1

dx

Θ(x)
=

∫ x2

x′2

dx

Θ(x)
=

a

m

(1 + δ0)

(1− δ0)
.

So, there exist ξ1 ∈ (x1, x
′
1) and ξ2 ∈ (x′2, x2) such that

−λ(ξ1) ≥ ω(ξ1)−m and λ(ξ2) ≥ ω(ξ2)−m.
Then

1

a

(1− δ0)

(1 + δ0)

∫ ξ2

ξ1

ω(x)2

Θ(x)
dx = λ(ξ2)− λ(ξ1) ≥ ω(ξ1) + ω(ξ2)− 2m.



6 ALLEN WEITSMAN

From (3.5)) we then have

µ1(ξ2)− µ2(ξ1) ≥ a
(1− δ0)

(1 + δ0)

∫ ξ2

ξ1

dx

Θ(x)
+ ω(ξ1) + ω(ξ2)− 2m− ω(ξ1)− ω(ξ2).

From this and (3.6) we deduce that

µ1(x2)− µ2(x1) ≥ a
(1− δ0)

(1 + δ0)

∫ x2

x1

dx

Θ(x)
− 2a2

m
− 2m.

With m = a and then

∫ x2

x1

dx

Θ(x)
> 2

1 + δ0

1− δ0

we have

µ1(x2)− µ2(x1) ≥ a
(1− δ0)

(1 + δ0)

∫ x2

x1

dx

Θ(x)
− 4a.

�

4. The Parameters

We now select parameters in order to utilize Lemma 1.

To begin with we fix ε1 > 0 and take a = π − ε1. Next, we fix 0 < δ0 < 1/2 so that
1− δ0

1 + δ0

> 1− ε1 and for

(4.1) C1 =
2π

a(1− ε1)

define ε2 by

(4.2) ε2 = C1 − 2.

We then define

(4.3) C2 = exp(
8π

(1− ε1)

and fix a value ρ in (2.9) large enough so that

(4.4) ρ > e5π and C2/ρ
ε2 < 1/2.

The R in Lemma 1 now corresponds to a sequence

Rε1n = Σε1 ∩ {(n− 1) log ρ ≤ µ ≤ n log ρ}.

Finally, we note that since log |h′| is a positive harmonic function in H, if M is the
maximum of log |h′| in Sε1,n and m the minimum of log |h′| in Sε1,n, there exists a
constant K = K(ε1, ρ) (independent of n) such that m/M ≥ K Thus, we may fix a
value M0 for M such that if log |h′| has maximum greater or equal to M0, then the
minimum of log |h′| will be greater than log(1/

√
δ0) and hence by (2.7)

|δ(ζ)| = 1/|h′(ζ)|2 < δ0 ζ ∈ Sε1,n.
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The objective will be to bound log |f(σ)| for large σ, with N chosen so that

ρN−1 < σ < ρN .

Note that |f(σ)| is unbounded. In fact since U(σ) = 2σ (recall (2.6)), if |f(σ)| were
bounded, then (1.3) would hold trivially.

5. Proof of Theorem 1

With the conventions in §4, we distinguish two cases.

Case 1. Here we consider the case in which the maximum of log |h′| is at least M0

in a given Sε1n. For the corresponding Rε1n, then w(z) = log(f−1(ez)) has dilatation
less than δ0 in w−1(Rε1n), and in Lemma 1 we take x1 + iy1 = w−1((n− 1) log ρ) and
x2 + iy2 = w−1(n log ρ). We claim that in this case,

(5.1)

n log ρ− (n− 1) log ρ ≥ µ1(n log ρ)− µ2((n− 1) log ρ)

≥ a(1− ε1)(
1

2π
)(log |f(ρn)− log |f(ρn−1)|)− 4a.

In fact, since ρ > e5π, if (3.3) does not hold, then (5.1) holds automatically. Otherwise
(5.1) follows from (3.4). We rewrite (5.1)

log |f(ρn)− log |f(ρn−1)| < 2π

a(1− ε1)
log ρ+

8π

(1− ε1)
.

so that

(5.2) |f(ρn)| < C2ρ
C1|f(ρn−1)|,

where C1 is as in (4.1) and C2 in (4.3). From (5.2) it follows that

(5.3)

|f(ρn)|
ρn(C1+ε2)

− |f(ρn−1)|
ρ(n−1)(C1+ε2)

<
|f(ρn)|
ρn(C1+ε2)

− |f(ρn−1)|
ρn(C1+ε2)

(C2ρ
C1 − 1)

|f(ρn−1)|
ρn(C1+ε2)

<
C2ρ

C1

ρC1+ε2

|f(ρn−1)|
ρ(n−1)(C1+ε2)

Case 2. If, on the other hand, the maximum of log |h′| in Sn is less than M0,

(5.4) |f(ρn)| − |f(ρn−1)| ≤
∫ ρn

ρn−1

(|h′(t)|+ 1/|h′(t)|)dt ≤ 2eM0(ρn − ρn−1).

From (5.4) we may write

(5.5)
|f(ρn))|
ρn(C1+ε2)

− |f(ρn−1))|
ρ(n−1)(C1+ε2)

<
|f(ρn)|
ρn(C1+ε2)

− |f(ρn−1))|
ρn(C1+ε2)

≤ 2eM
(ρn − ρn−1)

ρn(C1+ε2)

Combining (5.3) and (5.5) we may write

(5.6)
|f(ρn)|
ρn(C1+ε2)

− |f(ρn−1)|
ρ(n−1)(C1+ε2)

(
C2ρ

C1

ρC1+ε2
+

1

ρC1+ε2

)
<

2eM(1− 1/ρ)

ρn(C1+ε2−1)
.



8 ALLEN WEITSMAN

Using (4.4) and summing (5.6) up to n = N − 1 we have

(5.7)
|f(ρN−1))|
ρ(N−1)(C1+ε2)

< |f(1)|+K.

where K =
∑∞

n=1 2eM(1− ρ)/ρn(C1+ε2−1) <∞ since C1 > 2.

To estimate |f(σ)| for ρN−1 < σ < ρN , we first consider Case 1. If the condition in
(3.3) fails, then

(5.8) log |f(σ)| − log |f(ρN−1)| ≤ 4π
1 + δ0

1− δ0

.

which with (5.7) gives

(5.9) log |f(σ)| < log(|f(1)|+K) + (N − 1)(C1 + ε2) log ρ+
4π

1− ε1

.

Otherwise, as in (5.4)-(5.7) we have

(5.10)
|f(σ))|
ρN(C1+ε2)

< |f(1)|+K.

Comparing (5.9) and (5.10) as before, we deduce that (5.10) holds.

Using the fact that U(σ) = 2σ (recall (2.6)), σ > ρN−1, and C1 + ε2 = 2 + 2ε2 we
have

log |f(σ)|
logU(σ)

<
log |f(σ)|

log(2ρN−1)
<

log ρN(2+2ε2)

log(2ρN−1)
+

log(|f(1)|+K)

log(2ρN−1)
.

Since ε2 can be made arbitrarily small, (1.3) follows. �

References

1. L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 1966.
2. P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 2004.
3. E. Lundberg, A. Weitsman, On the growth of solutions to the minimal surface equation over

domains containing a half plane, Calc Var. Partial Differential Equations 54 (2015) 3385-3395.
4. O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1973.
5. V. Mikljukov, Some singularities in the behavior of solutions of equations of minimal surface

type in unbounded domains, Math. USSR Sbornik 44 (1983) 61-73.
6. R. Nevanlinna, Analytic functions, Springer-Verlag, 1970.
7. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo (1959).
8. A Weitsman, On the growth of minimal graphs, Indiana Univ. Math. J. 54 (2005) 617-625.
9. A. Weitsman Growth of solutions to the minimal surface equation over domains in a half plane,

Communications in Analysis and Geometry, 13 (2005) 1077-1087.
10. A. Weitsman, A sharp bound for the growth of minimal graphs, Computational Methods in

Function Theory 21 (2021) 905-914.

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395

Email: weitsman@purdue.edu


