A LOWER BOUND ON THE GROWTH OF MINIMAL GRAPHS

ALLEN WEITSMAN
Dedicated to the memory of Peter Duren with gratitude for his contributions to classical function theory.

Abstract

We show that for minimal graphs in R^{3} having 0 boundary values over simpy connected domains, the maximum over circles of radius r must be at least of the order $r^{1 / 2}$.

Keywords: minimal surface, harmonic mapping, asymptotics
MSC: 49Q05

1. Introduction

Let D be an unbounded domain in \mathbb{R}^{2}. We are interested in solutions to the minimal surface equation for the boundary value problem

$$
\begin{equation*}
L u=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \tag{1.1}
\end{equation*}
$$

in D with

$$
\begin{equation*}
u>0 \quad \text { in } \quad D, \quad u=0 \quad \text { on } \partial D . \tag{1.2}
\end{equation*}
$$

We shall use complex notation $z=x+i y$ for convenience. With $M(r)$ being the maximum value of $u(z)$ on $D \cap\{|z|=r\}$, we have previously studied upper bounds on the growth rate of $M(r)$ under various conditions [3], [9], [10]. We have also obtained some information on the lower bounds.
In [3] we observed the general result
Theorem A. Suppose D is a domain with $\partial D \neq \emptyset$, and u as in (1.1) and (1.2). Then $u(z)$ has at least logarithmic growth.
From [10] we have
Theorem B. Let u satisfy (1.1) and (1.2) with D simply connected and contained in a half plane. Then,

$$
\liminf _{r \rightarrow \infty} \frac{M(r)}{r}>0
$$

In this note we prove the following

Theorem 1. Suppose that $u(z)$ satisfies (1.1) and (1.2) with D simply connected. Then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log M(r)}{\log r} \geq 1 / 2 \tag{1.3}
\end{equation*}
$$

The upper half catenoid [2, p.161] shows the necessity of simple connectivity in Theorem 1.
We note that (1.3) with lim sup in place of lim inf follows from [8, Theorem 1]). Also, (1.3) with $1 / 2$ replaced by $1 / \pi$ can be deduced from the work of Miklyukov [5, p.64].

The example given in [9, p. 1085] shows that (1.3) is sharp. (See also [3, p 3391] for related examples.)

2. PRELIMINARIES

Let u be a solution to (1.1) and (1.2) over a simply connected domain D. We shall make use of the parametrization of a surface given by u in isothermal coordinates using Weierstrass functions $(x(\zeta), y(\zeta), U(\zeta))$ with ζ in the right half plane H. Our notation will then be given by

$$
\begin{equation*}
f(\zeta)=x(\zeta)+i y(\zeta) \quad \zeta=\sigma+i \tau \in H \tag{2.1}
\end{equation*}
$$

Then $f(\zeta)$ is univalent and harmonic, and since D is simply connected it can be written in the form

$$
\begin{equation*}
f(\zeta)=h(\zeta)+\overline{g(\zeta)} \tag{2.2}
\end{equation*}
$$

where $h(\zeta)$ and $g(\zeta)$ are analytic in H,

$$
\begin{equation*}
\left|h^{\prime}(\zeta)\right|>\left|g^{\prime}(\zeta)\right| . \tag{2.3}
\end{equation*}
$$

We dismiss the trivial case $g^{\prime} \equiv 0$ and may assume for later convenience that $f(0)=0$. Regarding the height function, we have (cf. [2, §10.2])

$$
\begin{equation*}
U(\zeta)= \pm 2 \Re e i \int \sqrt{h^{\prime}(\zeta) g^{\prime}(\zeta)} d \zeta \tag{2.4}
\end{equation*}
$$

Now, $z=f(\zeta), u(f(\zeta))=U(\zeta)$ and $U(\zeta)$ is harmonic and positive in H and vanishes on ∂H. Thus, (cf. [7, p. 151]),

$$
\begin{equation*}
U(\zeta)=K \Re e \zeta, \tag{2.5}
\end{equation*}
$$

where K is a positive constant. This with (2.4) gives

$$
g^{\prime}(\zeta)=-\frac{C}{h^{\prime}(\zeta)}
$$

where C is a positive constant. By reparametrizing we may assume that

$$
\begin{equation*}
U(\zeta)=2 \Re e \zeta \text { and } g^{\prime}(\zeta)=-1 / h^{\prime}(\zeta) \tag{2.6}
\end{equation*}
$$

and then the analytic dilatation $[2, \mathrm{p} .6] a(\zeta)$ satisfies

$$
\begin{equation*}
a(\zeta)=-1 / h^{\prime}(\zeta)^{2} \tag{2.7}
\end{equation*}
$$

Furthermore, from (2.3) we have, in particular, that

$$
\begin{equation*}
\left|h^{\prime}(\zeta)\right|=1 /\left|g^{\prime}(\zeta)\right|>1 \tag{2.8}
\end{equation*}
$$

The strategy will be to analyze $f(\zeta)$ in sectors

$$
S_{\epsilon}=\{(-\pi+\varepsilon) / 2<\arg \zeta<(\pi-\varepsilon) / 2\}
$$

where $0<\varepsilon<\pi / 2$. We also define, for fixed $\rho>1$,

$$
\begin{equation*}
S_{\varepsilon, n}=S_{\varepsilon} \cap\left\{\rho^{n} \leq|\zeta| \leq \rho^{n+1}\right\} n=0,1,2, \ldots \tag{2.9}
\end{equation*}
$$

3. Quasiconformal mappings

We shall have occasion to view the harmonic mapping described in $\S 2$ as a quasiconformal mapping. A one to one sense preserving mapping f in a domain D is quasiconformal, if its complex dilatation $\delta(\zeta)$ defined by (cf.([2, p. 5]))

$$
\begin{equation*}
\delta(\zeta)=\frac{f_{\bar{\zeta}}(\zeta)}{f_{\zeta}(\zeta)} \tag{3.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\sup _{\zeta \in D}|\delta(\zeta)|<1 \tag{3.2}
\end{equation*}
$$

Henceforth, we shall refer to $|\delta(\zeta)|$ simply as the dilatation.
The dilatation is a conformal invariant, and the inverse mapping has the same dilatation at corresponding points [1, p. 9].
We shall need a modification of the Ahlfors distortion theorem which requires slight changes in the standard proof [6, pp. 94-97].
In the classical setting we have a simply connected region G with accessible boundary points $Z_{1}=X_{1}+i Y_{1}$ and $Z_{2}=X_{2}+i Y_{2} Z_{1}$ and Z_{2}. We assume that $-\infty \leq X_{1}=$ $\inf \Re e z$ for $z \in G$ and $\infty \geq X_{2}=\sup \Re e z$ for $z \in G$. We consider $z=x+i y$ in G with cross cuts Θ_{x} separating Z_{1} and Z_{2} in G (See ([6, pp. 94-95]) for more details). Let $\Theta(x)$ be the length of Θ_{x}. Let $w(z)=\mu(z)+i \nu(z)$ be a conformal mapping of G onto the strip $\{|\nu|<a / 2\}$ such that Z_{1} corresponds to $-\infty$ and Z_{2} to $+\infty$.
If $\mu_{1}(x)$ denotes the smallest value on the cross cut and $\mu_{2}(x)$ the largest, then the classical distortion theorem is as follows.
Theorem C. If

$$
\int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}>2
$$

then

$$
\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right) \geq a \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}-4 a
$$

For our purposes, the strip Σ_{ε} will be the (principal branch) logarithmic image of S_{ε} in the $w=\mu+i \nu$ plane and G will be the image of a fixed branch of $\log f\left(S_{\varepsilon}\right)$ in the $z=x+i y$ plane with f as in $\S 2$. As previously mentioned, we assume for convenience that $f(0)=0$ so that in G, $\Re e z$ extends from $-\infty$ to $+\infty$.
Let $w(z)=\log \left(f^{-1}\left(e^{z}\right)\right)$ for the principal branch of \log which then has the same dilatation as f at corresponding points.
Lemma 1. With the above notations, let R be a rectangle in the $\mu+i \nu$ plane

$$
R=\Sigma_{\varepsilon} \cap\{\alpha \leq \mu \leq \beta\} \quad 0<\alpha<\beta,
$$

and suppose that $w(z)$ has dilatation less than δ_{0} in $w^{-1}(R)$. Then for $x_{1}+i y_{1}$ and $x_{2}+i y_{2}$ in $w^{-1}(R)\left(x_{1}<x_{2}\right)$ and $a=\pi-\varepsilon$, if

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}>2 \frac{1+\delta_{0}}{1-\delta_{0}} \tag{3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right) \geq a \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}-4 a \tag{3.4}
\end{equation*}
$$

Proof. Our proof follows [6, pp 95-97].
The length of the arc L_{x} corresponding to $w\left(\Theta_{x}\right)$ is at least $\sqrt{a^{2}+\omega(x)^{2}}$, where $\omega(x)=\mu_{2}(x)-\mu_{1}(x)$. Also,

$$
L_{x} \leq \int_{\Theta_{x}}\left(\left|w_{z}\right|+\left|w_{\bar{z}}\right|\right) d y \leq \int_{\Theta_{x}}\left(\left|w_{z}\right|\left(1+\delta_{0}\right) d y \leq \sqrt{\int_{\Theta_{x}} d y \int_{\Theta_{x}}\left|w_{z}\right|^{2}\left(1+\delta_{0}\right)^{2} d y}\right.
$$

Thus,

$$
a^{2}+\omega(x)^{2} \leq \Theta(x) \int_{\Theta_{x}}\left|w_{z}\right|^{2}\left(1+\delta_{0}\right)^{2} d y
$$

Then,

$$
\begin{gathered}
a^{2} \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}+\int_{x_{1}}^{x_{2}} \frac{\omega(x)^{2} d x}{\Theta(x)} \leq \int_{x_{1}}^{x 2} \int_{\Theta_{x}}\left|w_{z}\right|^{2}\left(1+\delta_{0}\right)^{2} d y d x \\
=\left(1+\delta_{0}\right)^{2} \int_{x_{1}}^{x_{2}} \int_{\Theta_{x}}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}+\left|w_{\bar{z}}\right|^{2}\right) d y d x \\
\leq\left(1+\delta_{0}\right)^{2} \int_{x_{1}}^{x_{2}} \int_{\Theta_{x}}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}+\frac{\delta_{0}^{2}\left|w_{z}\right|^{2}}{\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}\right)}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}\right) d y d x\right. \\
\leq\left(1+\delta_{0}\right)^{2} \int_{x_{1}}^{x_{2}} \int_{\Theta_{x}}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}\right)\left(1+\frac{\delta_{0}^{2}}{1-\delta_{0}^{2}}\right) d y d x
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1+\delta_{0}}{1-\delta_{0}} \int_{x_{1}}^{x_{2}} \int_{\Theta_{x}}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}\right) d y d x \\
\leq a \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)}\left(\mu_{2}\left(x_{2}\right)-\mu_{1}\left(x_{1}\right)\right) \\
=a \frac{\left(1+\delta_{0}\right)}{\left(\left(1-\delta_{0}\right)\right.}\left(\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right)+\omega\left(x_{2}\right)+\omega\left(x_{1}\right)\right) .
\end{gathered}
$$

Summarizing this we have

$$
\begin{equation*}
\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right) \geq \frac{1-\delta_{0}}{1+\delta_{0}}\left(a \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}+\frac{1}{a} \int_{x_{1}}^{x_{2}} \frac{\omega(x)^{2}}{\Theta(x)} d x\right)-\omega\left(x_{1}\right)-\omega\left(x_{2}\right) . \tag{3.5}
\end{equation*}
$$

For $x_{0} \in\left(x_{1}, x_{2}\right)$, let

$$
\lambda(x)=\frac{1}{a} \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{x_{1}}^{x} \frac{\omega(t)^{2}}{\Theta(t)} d t
$$

Let $m>0$ be fixed and \mathcal{E} be the set of $x>x_{0}$ such that $\lambda(x)<\omega(x)-m$. Then,

$$
a \frac{\left.1+\delta_{0}\right)}{\left(1-\delta_{0}\right)} \Theta\left((x) \frac{d \lambda}{d x}=\omega(x)^{2}>(\lambda(x)+m)^{2}\right.
$$

so that

$$
\int_{\mathcal{E}} \frac{d x}{\Theta(x)} \leq a \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)} \int_{\mathcal{E}} \frac{d \lambda}{(\lambda+m)^{2}} \leq \frac{a}{m} \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)}
$$

Similarly, if \mathcal{F} is the set of $x<x_{0}$ such that $-\lambda(x)<\omega(x)-m$,

$$
\int_{\mathcal{F}} \frac{d x}{\Theta(x)} \leq \frac{a}{m} \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)}
$$

Choose x_{0} such that

$$
\int_{x_{1}}^{x_{0}} \frac{d x}{\Theta(x)}=\int_{x_{0}}^{x_{2}} \frac{d x}{\Theta(x)}=\frac{1}{2} \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}
$$

Then, if

$$
\int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}>2 \frac{a}{m} \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)}
$$

we may take x_{1}^{\prime}, $x_{2}^{\prime}\left(x_{1}<x_{1}^{\prime}<x_{2}^{\prime}<x_{2}\right)$ such that

$$
\begin{equation*}
\int_{x_{1}}^{x_{1}^{\prime}} \frac{d x}{\Theta(x)}=\int_{x_{2}^{\prime}}^{x_{2}} \frac{d x}{\Theta(x)}=\frac{a}{m} \frac{\left(1+\delta_{0}\right)}{\left(1-\delta_{0}\right)} \tag{3.6}
\end{equation*}
$$

So, there exist $\xi_{1} \in\left(x_{1}, x_{1}^{\prime}\right)$ and $\xi_{2} \in\left(x_{2}^{\prime}, x_{2}\right)$ such that

$$
-\lambda\left(\xi_{1}\right) \geq \omega\left(\xi_{1}\right)-m \text { and } \lambda\left(\xi_{2}\right) \geq \omega\left(\xi_{2}\right)-m
$$

Then

$$
\frac{1}{a} \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{\xi_{1}}^{\xi_{2}} \frac{\omega(x)^{2}}{\Theta(x)} d x=\lambda\left(\xi_{2}\right)-\lambda\left(\xi_{1}\right) \geq \omega\left(\xi_{1}\right)+\omega\left(\xi_{2}\right)-2 m
$$

From (3.5)) we then have

$$
\mu_{1}\left(\xi_{2}\right)-\mu_{2}\left(\xi_{1}\right) \geq a \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{\xi_{1}}^{\xi_{2}} \frac{d x}{\Theta(x)}+\omega\left(\xi_{1}\right)+\omega\left(\xi_{2}\right)-2 m-\omega\left(\xi_{1}\right)-\omega\left(\xi_{2}\right)
$$

From this and (3.6) we deduce that

$$
\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right) \geq a \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}-\frac{2 a^{2}}{m}-2 m
$$

With $m=a$ and then $\int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}>2 \frac{1+\delta_{0}}{1-\delta_{0}}$ we have

$$
\mu_{1}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right) \geq a \frac{\left(1-\delta_{0}\right)}{\left(1+\delta_{0}\right)} \int_{x_{1}}^{x_{2}} \frac{d x}{\Theta(x)}-4 a
$$

4. The Parameters

We now select parameters in order to utilize Lemma 1 .
To begin with we fix $\varepsilon_{1}>0$ and take $a=\pi-\varepsilon_{1}$. Next, we fix $0<\delta_{0}<1 / 2$ so that $\frac{1-\delta_{0}}{1+\delta_{0}}>1-\varepsilon_{1}$ and for

$$
\begin{equation*}
C_{1}=\frac{2 \pi}{a\left(1-\varepsilon_{1}\right)} \tag{4.1}
\end{equation*}
$$

define ε_{2} by

$$
\begin{equation*}
\varepsilon_{2}=C_{1}-2 \tag{4.2}
\end{equation*}
$$

We then define

$$
\begin{equation*}
C_{2}=\exp \left(\frac{8 \pi}{\left(1-\varepsilon_{1}\right)}\right. \tag{4.3}
\end{equation*}
$$

and fix a value ρ in (2.9) large enough so that

$$
\begin{equation*}
\rho>e^{5 \pi} \text { and } C_{2} / \rho^{\varepsilon_{2}}<1 / 2 \tag{4.4}
\end{equation*}
$$

The R in Lemma 1 now corresponds to a sequence

$$
R_{\varepsilon_{1} n}=\Sigma_{\varepsilon_{1}} \cap\{(n-1) \log \rho \leq \mu \leq n \log \rho\}
$$

Finally, we note that since $\log \left|h^{\prime}\right|$ is a positive harmonic function in H, if M is the maximum of $\log \left|h^{\prime}\right|$ in $S_{\varepsilon_{1}, n}$ and m the minimum of $\log \left|h^{\prime}\right|$ in $S_{\varepsilon_{1}, n}$, there exists a constant $K=K\left(\varepsilon_{1}, \rho\right)$ (independent of n) such that $m / M \geq K$ Thus, we may fix a value M_{0} for M such that if $\log \left|h^{\prime}\right|$ has maximum greater or equal to M_{0}, then the minimum of $\log \left|h^{\prime}\right|$ will be greater than $\log \left(1 / \sqrt{\delta_{0}}\right)$ and hence by (2.7)

$$
|\delta(\zeta)|=1 /\left|h^{\prime}(\zeta)\right|^{2}<\delta_{0} \quad \zeta \in S_{\varepsilon_{1}, n}
$$

The objective will be to bound $\log |f(\sigma)|$ for large σ, with N chosen so that

$$
\rho^{N-1}<\sigma<\rho^{N}
$$

Note that $|f(\sigma)|$ is unbounded. In fact since $U(\sigma)=2 \sigma$ (recall (2.6)), if $|f(\sigma)|$ were bounded, then (1.3) would hold trivially.

5. Proof of Theorem 1

With the conventions in $\S 4$, we distinguish two cases.
Case 1. Here we consider the case in which the maximum of $\log \left|h^{\prime}\right|$ is at least M_{0} in a given $S_{\varepsilon_{1} n}$. For the corresponding $R_{\varepsilon_{1} n}$, then $w(z)=\log \left(f^{-1}\left(e^{z}\right)\right)$ has dilatation less than δ_{0} in $w^{-1}\left(R_{\varepsilon_{1} n}\right)$, and in Lemma 1 we take $x_{1}+i y_{1}=w^{-1}((n-1) \log \rho)$ and $x_{2}+i y_{2}=w^{-1}(n \log \rho)$. We claim that in this case,

$$
\begin{align*}
& n \log \rho-(n-1) \log \rho \geq \mu_{1}(n \log \rho)-\mu_{2}((n-1) \log \rho) \\
& \geq a\left(1-\varepsilon_{1}\right)\left(\frac{1}{2 \pi}\right)\left(\log \left|f\left(\rho^{n}\right)-\log \right| f\left(\rho^{n-1}\right) \mid\right)-4 a \tag{5.1}
\end{align*}
$$

In fact, since $\rho>e^{5 \pi}$, if (3.3) does not hold, then (5.1) holds automatically. Otherwise (5.1) follows from (3.4). We rewrite (5.1)

$$
\log \left|f\left(\rho^{n}\right)-\log \right| f\left(\rho^{n-1}\right) \left\lvert\,<\frac{2 \pi}{a\left(1-\varepsilon_{1}\right)} \log \rho+\frac{8 \pi}{\left(1-\varepsilon_{1}\right)}\right.
$$

so that

$$
\begin{equation*}
\left|f\left(\rho^{n}\right)\right|<C_{2} \rho^{C_{1}}\left|f\left(\rho^{n-1}\right)\right|, \tag{5.2}
\end{equation*}
$$

where C_{1} is as in (4.1) and C_{2} in (4.3). From (5.2) it follows that

$$
\begin{align*}
& \frac{\left|f\left(\rho^{n}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}-\frac{\left|f\left(\rho^{n-1}\right)\right|}{\rho^{(n-1)\left(C_{1}+\varepsilon_{2}\right)}}<\frac{\left|f\left(\rho^{n}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}-\frac{\left|f\left(\rho^{n-1}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}} \\
& \left(C_{2} \rho^{C_{1}}-1\right) \frac{\left|f\left(\rho^{n-1}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}<\frac{C_{2} \rho^{C_{1}}}{\rho^{C_{1}+\varepsilon_{2}}} \frac{\left|f\left(\rho^{n-1}\right)\right|}{\rho^{(n-1)\left(C_{1}+\varepsilon_{2}\right)}} \tag{5.3}
\end{align*}
$$

Case 2. If, on the other hand, the maximum of $\log \left|h^{\prime}\right|$ in S_{n} is less than M_{0},

$$
\begin{equation*}
\left|f\left(\rho^{n}\right)\right|-\left|f\left(\rho^{n-1}\right)\right| \leq \int_{\rho^{n-1}}^{\rho^{n}}\left(\left|h^{\prime}(t)\right|+1 /\left|h^{\prime}(t)\right|\right) d t \leq 2 e^{M_{0}}\left(\rho^{n}-\rho^{n-1}\right) \tag{5.4}
\end{equation*}
$$

From (5.4) we may write

$$
\begin{equation*}
\frac{\left.\mid f\left(\rho^{n}\right)\right) \mid}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}-\frac{\left|f\left(\rho^{n-1)}\right)\right|}{\rho^{(n-1)\left(C_{1}+\varepsilon_{2}\right)}}<\frac{\left|f\left(\rho^{n}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}-\frac{\left|f\left(\rho^{n-1)}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}} \leq 2 e^{M} \frac{\left(\rho^{n}-\rho^{n-1}\right)}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}} \tag{5.5}
\end{equation*}
$$

Combining (5.3) and (5.5) we may write

$$
\begin{equation*}
\frac{\left|f\left(\rho^{n}\right)\right|}{\rho^{n\left(C_{1}+\varepsilon_{2}\right)}}-\frac{\left|f\left(\rho^{n-1}\right)\right|}{\rho^{(n-1)\left(C_{1}+\varepsilon_{2}\right)}}\left(\frac{C_{2} \rho^{C_{1}}}{\rho^{C_{1}+\varepsilon_{2}}}+\frac{1}{\rho^{C_{1}+\varepsilon_{2}}}\right)<\frac{2 e^{M}(1-1 / \rho)}{\rho^{n\left(C_{1}+\varepsilon_{2}-1\right)}} . \tag{5.6}
\end{equation*}
$$

Using (4.4) and summing (5.6) up to $n=N-1$ we have

$$
\begin{equation*}
\frac{\left.\mid f\left(\rho^{N-1}\right)\right) \mid}{\rho^{(N-1)\left(C_{1}+\varepsilon_{2}\right)}}<|f(1)|+K \tag{5.7}
\end{equation*}
$$

where $K=\sum_{n=1}^{\infty} 2 e^{M}(1-\rho) / \rho^{n\left(C_{1}+\varepsilon_{2}-1\right)}<\infty$ since $C_{1}>2$.
To estimate $|f(\sigma)|$ for $\rho^{N-1}<\sigma<\rho^{N}$, we first consider Case 1. If the condition in (3.3) fails, then

$$
\begin{equation*}
\log |f(\sigma)|-\log \left|f\left(\rho^{N-1}\right)\right| \leq 4 \pi \frac{1+\delta_{0}}{1-\delta_{0}} \tag{5.8}
\end{equation*}
$$

which with (5.7) gives

$$
\begin{equation*}
\log |f(\sigma)|<\log (|f(1)|+K)+(N-1)\left(C_{1}+\varepsilon_{2}\right) \log \rho+\frac{4 \pi}{1-\varepsilon_{1}} \tag{5.9}
\end{equation*}
$$

Otherwise, as in (5.4)-(5.7) we have

$$
\begin{equation*}
\frac{\mid f(\sigma)) \mid}{\rho^{N\left(C_{1}+\varepsilon_{2}\right)}}<|f(1)|+K \tag{5.10}
\end{equation*}
$$

Comparing (5.9) and (5.10) as before, we deduce that (5.10) holds.
Using the fact that $U(\sigma)=2 \sigma$ (recall (2.6)), $\sigma>\rho^{N-1}$, and $C_{1}+\varepsilon_{2}=2+2 \varepsilon_{2}$ we have

$$
\frac{\log |f(\sigma)|}{\log U(\sigma)}<\frac{\log |f(\sigma)|}{\log \left(2 \rho^{N-1}\right)}<\frac{\log \rho^{N\left(2+2 \varepsilon_{2}\right)}}{\log \left(2 \rho^{N-1}\right)}+\frac{\log (|f(1)|+K)}{\log \left(2 \rho^{N-1}\right)}
$$

Since ε_{2} can be made arbitrarily small, (1.3) follows.

References

1. L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 1966.
2. P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 2004.
3. E. Lundberg, A. Weitsman, On the growth of solutions to the minimal surface equation over domains containing a half plane, Calc Var. Partial Differential Equations 54 (2015) 3385-3395.
4. O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1973.
5. V. Mikljukov, Some singularities in the behavior of solutions of equations of minimal surface type in unbounded domains, Math. USSR Sbornik 44 (1983) 61-73.
6. R. Nevanlinna, Analytic functions, Springer-Verlag, 1970.
7. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo (1959).
8. A Weitsman, On the growth of minimal graphs, Indiana Univ. Math. J. 54 (2005) 617-625.
9. A. Weitsman Growth of solutions to the minimal surface equation over domains in a half plane, Communications in Analysis and Geometry, 13 (2005) 1077-1087.
10. A. Weitsman, A sharp bound for the growth of minimal graphs, Computational Methods in Function Theory 21 (2021) 905-914.

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395
Email: WEITSMAN@purdue.Edu

